Glutamatergic regulation of bone remodeling.

نویسنده

  • C Chenu
چکیده

L-glutamate (Glu) is the predominant neuromediator in the mammalian central nervous system (CNS). Bone is highly innervated and there is growing evidence of a neural control of bone cell metabolism. The recent discovery of Glu-containing nerve fibers in bone and Glu receptors (GluR) and transporters in bone cells suggest that this neuromediator may also act as a signaling molecule in bone and regulate bone cell function. Our previous studies have demonstrated that ionotropic N-Methyl-D-Aspartate (NMDA) GluR are highly expressed by mammalian osteoclasts. NMDA receptors (NMDAR) are heteromers associating the NR1 subunit and one of the four types of NR2 subunits (NR2A to D). We showed that osteoclasts express NR1, NR2B and NR2D subunits, suggesting a molecular diversity of NMDAR in these cells. Electrophysiological studies have confirmed that NMDAR are functional in mature osteoclasts, and features of Glu-induced current recorded in these cells indicate a major NR2D subunit composition. Using an in vitro assay of bone resorption, we showed that several antagonists of NMDAR binding to different sites of the receptor inhibit bone resorption. In particular, the specific NMDAR channel blocker MK801 had no effect on osteoclast attachment to bone and survival while it rapidly decreased the percentage of osteoclasts with actin ring structures that are associated with actively resorbing osteoclasts. NMDAR may thus be involved in adhesion-induced formation of the sealing zone required for bone resorption. NMDAR are also expressed by osteoclast precursors isolated from mouse bone marrow. We recently confirmed the presence of NR1, NR2B and NR2D in these cells and demonstrated their expression at all differentiation stages from osteoclast precursors to mature resorbing osteoclasts. No regulation of these subunits mRNA expression levels was observed throughout the osteoclastic differentiation sequence. Activation of NMDAR may therefore represent a new mechanism for regulating osteoclast formation and activity. While the origin of Glu in bone is still unknown, the possibility of a glutamatergic neurotransmission in this tissue is suggested by the detection of Glu in nerve fibers in close contact to bone cells. Furthermore, we recently demonstrated that sciatic neurectomy in growing rats induces a bone loss associated with a reduction of nerve profiles immunostained for Glu. These results suggest that Glu may be released from glutamatergic nerve profiles present in bone and therefore contribute to the local regulation of bone cell function.

منابع مشابه

Osteoblastic glutamate receptor function regulates bone formation and resorption.

Previous studies showed that a variety of bone cells express protein components necessary for neuronal-like glutamatergic signaling and implicated glutamate as having a role in mechanically induced bone remodeling. Initial functional studies concentrated on the role of glutamate signaling in bone resorption and provided compelling evidence to suggest that glutamate signaling through functional ...

متن کامل

Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle

Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Microinjection of NMDA Receptor Agents into the Central Nucleus of the Amygdale Alters Water Intake in Rats

Objective(s) The central nucleus of the amygdala (CeA) is a forebrain structure which is important in regulation of ingestive behavior and there is direct and circumstantial evidence to indicate that some circuits involved with feeding behavior include glutamatergic elements. The present study examined whether administration of NMA (N-Methyl-DL-aspartic acid) or MK801 into the CeA altered wate...

متن کامل

Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses

Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2002